February 2015

Nanotechnology and Display Applications

Dr. Zvi Yaniv Applied Nanotech, Inc.

3006 Longhorn Blvd., Suite 107 Austin, TX 78758 Phone: 512-339-5020 ext. 103 Email: <u>zyaniv@appliednanotech.net</u>

Outline

- The relation between nanotechnology and display industry
- The colorful world of quantum dots
- Quantum confinement and properties of nanoparticles
- Si nanocrystals LEDs and lasers
- Photonic crystals
- The modern display industry always used nanotechnology!
 - LC alignment layers
 - PDLC
 - PSCT
 - Metal nanoparticles in liquid crystal
 - Nanochromics
 - Electrophoretic
 - Discotic polalizers

- FEDs
 - CNT FEDs
 - HyFED
 - Metalic nanowires FEDs
 - Discotic liquid crystal FEDs?
 - Carbonaceous mesophase FEDs?
- SED TV versus CNT FED TV
- iMoD from Quallcomm
- A "flexible" revolution and nanotechnology impact
 - OLED
 - Gyricon
 - E-Ink
 - Cholesteric
- Self-assembled displays?
- Conclusions

Nanotechnology definition (original)

Nanotechnology is a new scientific field evolving from material—specific peculiarities of present elements when their sizes become nanometric (one nanometer corresponds to the millionth part of one millimeter).

Alternative nanotechnology definition (1)

Nanotechnology describes the creation and utilization of functional materials, devices and systems with novel functions and properties that are based either on geometrical or on material specific peculiarities of nanostructure.

Alternative nanotechnology definition (2)

Nanotechnology is the scientific field encompassing the mastery of understanding and manipulating atomic and molecular matter and interactions as prerequisite for the optimization of existing products and the creation of new ones.

The vast interdisciplinary nature of nanotechnology will...

- Improve characterization and imaging (visualization)
- Increase capabilities of chemical/biological analysis
- Facilitate manipulation of nanostructures
- Enhance theory and modeling
- Reveal the role of surfaces and interfaces
- Control size distribution, composition and self-assembly of nanostructures
- Solve concerns of thermal and structural stability
- Achieve reproducibility and scalability in synthesis and manufacturing
- Create a new type of researchers that can work across traditional disciplines and think out of the box
- Induce the congregation of all disciplines from Physics to Chemistry and Biology to essentially all other engineering disciplines
- Generate self-assembled organic (even life matter) material that can form a template of scaffolding for organic and inorganic additives

What is needed to succeed?.. Creativity!

- New techniques must be discovered to organize, characterize and manipulate these nanoscale individual elements.
- Insights into self—organization principles of these nanoelements are necessary.
- Implementation of nanoscale architectures with new microscopic and macroscopic functions.
- Nanotechnology will catalyze the unification of processes from the living to the non-living worlds.
- Nanotechnology is revolutionizing materials' understanding and offers the capability to create new artificial materials (stronger, lighter, with pre-defined optical and electronic properties, etc.).

The building blocks of nanotechnology

- Ultra-thin layers
- Top down nanostructures
- Bottom up structures
- Ultra-precise surface preparation
- Analytical instrumentation for nanostructures
- Integration of nanomaterials and molecular structures
- Nanotechnology and biotechnology convergence

Alternative nanotechnology definition (3)

Nanotechnology is the "perfect scientific storm" in a place where all natural sciences congregate and intersect each other at the nanoscale. Nanotechnology is a creative and transformational technology.

Nanotechnology opportunities

- Medicine/biology
- Chemistry
- New materials
- New nanoelectronic technology integrated with current microelectronics
- Optics and displays
- Applied research commercialization
- Defense and security

Basic nanocrystal QD architecture

-- from Merrill Lynch presentation

Bulk semiconductor

-- from Merrill Lynch presentation

Why nanocrystals? Quantum confinement!

-- from Merrill Lynch presentation

Quantum confinement

-- from Merrill Lynch presentation

CdSe quantum dots

Si nanocrystals (quantum dots) produced by ANI

Visible Light

UV Light

Si nanocrystals photoluminescence

Heisenberg principle works!

Illustration of how energy levels of a metal change when the number of atoms of the material is reduced: (a) valence band of bulk metal, (b) large metal cluster if 100 atoms showing opening of a band gap; (c) small metal cluster containing three atoms.

Metalic clusters behave as "super atoms"

- (a) A plot of the ionization energy of single atoms versus the atomic number.
- (b) (b) plot of the ionization energy of sodium nanoparticles versus the number of atoms in the cluster. [A. Herman et al., J. Chem. Phys. 80, 1780 (1984).]

Properties of a cluster depend on the number of atoms

UV photoelectron spectrum in the valence band region of copper nanoparticles having 20 and 40 atoms.

C.L. Pattiete et. Al., J. Chem. Phys. 88, 5377 (1988).

Applied Nanotech, Inc.

Chemical reactions depend on a number of atoms in the cluster

Reaction rate of hydrogen gas with iron nanoparticles versus the particle size.

R.L. Whetten et al., Phys. Rev. Lett. 54, 1494 (1985).

Size dependent melting of Cu nanoparticles

Dependencies of the temperature of melting and surface melting of copper nanoparticles on their diameter.

O.A. Yeshchenko, et al,

arXiv:co23-mat/0701276v1 12 Jan 2007

Near IR and visible LEDs fabricated from Si nanocrystals

- Si nanocrystals by laser ablation
- Separation technique by differential mobility in a viscous fluid

T. Yoshida, N. Suzuki, T. Makino, Y. Yamada

Matsushita, Japan

Monodispersed Si nanocrystals

- a) Dark field (left) and highresolution bright-field (right)
 TEM images of deposited monodispersed Si nanocrystallites
- b) Histogram of particle diameters

Solid State Technology, APR. 2002, pg. 41

Characteristics of Si nanocrystal LEDs

Integrated emission intensity as a function of forward injection current

Light emission spectra of LEDs at room temperature from:

a) the clean sequential process without exposure to air after Si nanocrystallite deposition and

b) with exposure to air and thermal oxidation before In2O3 deposition. Dissipation power = 84mW

Solid State Technology, APR. 2002, pg. 41

Microscopic lasers of Si nanoparticles

- In aggregates Si nanoparticles lased in response to a green mercury lamp
- In 6 µm aggregates Si nanocrystals can stimulate each other until a higher energy state is achieved resulting in laser action (blue and red lasers were demonstrated).

Model of a 1-nm particle containing 29 Si atoms, with 24 hydrogen atoms terminating the surface.

University of Illinois, EE Times, March 4, 2002, pg. 61

Macrocrystals with photonic gap

Curve of energy E-plotted versus wavevector κ for a onedimensional line of atoms.

Photonic crystals

A two-dimensional photonic crystal made by arranging long cylinders of dielectric materials in a square lattice array.

Guided modes in photonic crystals

Effect of removing one row of rods from a square lattice of a photonic crystal, which introduces a level (guided mode) in a forbidden gap.

J. D. Joannapolous, Nature 386, 143 (1970)

The LC nematic phase and molecular alignment

Molecules are arranged in a loosely ordered fashion with their long axes parallel.

When flowing on a finely grooved surface (alignment layer) Molecules line up parallel along the grooves.

Different types of nematic liquid crystal orientation

After V.G. Chigrinov

Influence of PI molecular shape

The role of the molecular shape of determining the surface molecular undulations

After S. Kobayashi, *et al*, Tokyo 33 University, Japan

PSCT

SEM Photograph of the polymer network in PSCT reversemode light shutter.

After Wu and Yang

PSCT

Schematic diagram showing how the polymer-stabilized cholesteric texture normal-mode light shutter works.

After Wu and Yang

PSCTD

Switching between three cholesteric textures in PSCT configuration.

After V.G. Chigrinov

Metal nanoparticle doped liquid crystal

Ube Industries, Ltd.

Metal nanoparticle dopped liquid crystal

LCD response time and CR improved at -15°C

38

Ube Industries, Ltd.

NanoChromics[™] paper quality display technology

Electrochromic materials change their color under the influence of electricity

- Current areas of commercial applications
 - Anti-glare rear view mirrors (for over 10 years)
 - Smart windows (first products entering market)
- Electrochromic displays not currently on market
 - Slow switching speed and power consumption are listed as issues

Li Based EC Device (Sage Glass)

- Based on reversible lithium insertion into EC layer, e.g.:
 WO₃ + x Li⁺ + *e⁻ Li_xWO₃
 clear blue
- State of coloration determined by x
- Lithium stored in CE in clear state

TC - transparent conductor - provides conductive path for electrons

CE - counter electrode - stores Li ions

IC - allows conduction of Li⁺ *ions & prevents conduction of electrons*

EC - electrochromic electrode

Electrophoretic display

Device structure of an in-plane electrophoretic display: (a) black state, (b) bright state.

E-Ink

O-type sheet polarizers

Schematic drawing of an O-type sheet polarizer which transmits polarization component with E-vector perpendicular to the direction of alignment and absorbs polarization component with E-vector parallel to the directions of alignment.

Applied Nanotech, Inc.

E-type sheet polarizers

Schematic drawing of an E-type sheet polarizer which transmits polarization component with E-vector parallel to the direction of alignment and absorbs polarization component with E-vector perpendicular to the direction of alignment.

The contrast ratio dependence

The contrast ratio dependence of viewing angle in the range (-80°, 80°). The continuous curve is the contrast ratio for N600 OPTIVA polarizer. The dashed curve is the contrast ratio for the conventional (O-type) polarizer.

CNTs for FEDs

Why CNTs?

• The high current carrying capacity, huge thermal conductivity, length independent resistance and mechanical stability of metallic nanotubes suggests applications for microelectronic interconnects;

• The reasonably large band gap of narrow single-walled nanotubes suggests nanoscale transistors and diodes;

• The small radius of curvature at the tips of nanotubes suggests lowvoltage field emission devices for flat-panel displays.

The top three markets for carbon nanotube thin film technology

- Large area color TVs
- Medium resolution large area electronic billboards
- Backlights for LCDs

Target for ultra-high definition and wide screen display

Applied Nanotech, Inc.

Data from F. Sato and M. Seki, IDW '01, p.1153 48

Emission site density required for applications as a function of the pixel size

The FED PET and VFD PET (right)

SID 1997

Large screen home FEDs

- Target market is 60"-80" display for home-use flat screen HDTV.
- "The field emission display (FED) is one of the most promising devices for this from viewpoints of energy efficiency, luminance, response time, etc." (F. Sato and M. Seki, NHK, IDW'01)
- Luminance ~ 1000 cd/m²
- Luminance efficiency (Lm/W) ~ 15

Cross-section of display structure

Cs treatment lowers driving voltage

Field emission I-V of composites of various concentrations of CNT-nanoparticles

ANI's 25" color CNT TV

FED vs. HyFED™

Demonstration of $HyFED^{TM}$

Two beams (left), each scanning 6x8 pixels at a resolution of 250 dots/inch (right).

Summer, 1998

Creation of ordered nanocylinders cavities film

M. T. Tuominen and T.P. Russell. University of Massachusetts, USA.

Organized metal cylinders in a polymeric matrix

Lattice: Hexagonal

PERIOD: ≈ 25nm

Cylinder Density $\approx 10^{12} \frac{\text{cylinders}}{\text{inch}^2}$

Discotic liquid crystal

Nematic Director

Chemist's view

Physicist 's view

HABT8 (EM Industries) 2,3,6,7,10,11, - triphenylene hexa(octylyloxy benzoate N. H. Tinh, H. Gasparoux, C. Destrade, *Molecular Crystal Liquid Crystal* **68**, 101 (1981)

Courtesy of Dr. Gregory Crawford, Brown University, Providence, RI

Discotic liquid crystal

K - 152°C - Dr - 169°C - N_D - 244°C - I

Liquid crystals (membranes)

Lyotropic

micelle

reverse micelle

cross section

cross section

Templates processing

Courtesy of Dr. Gregory Crawford, Brown University, Providence, RI Solution-deposited carbon nanotube layers for flexible display applications

<u>Axel Schindler</u>, Jochen Brill, Norbert Fruehauf

Chair of Display Technology, University of Stuttgart, Germany

66

James P. Novak, Zvi Yaniv

Applied Nanotech Inc., Austin, TX 78758 USA

Device fabrication

- Glass substrate with patterned Al gate
- Formation of Al₂O₃ gate dielectric by anodic oxidation
- SAM of 3-amino-propyl-triethoxysilane as adhesion promoter
- Spin coating SWNT suspension plus organic solvent
- Rinse to remove residual surfactant
- Forming Palladium or Titatium S/D contacts
 - E-beam evaporation and Lift-off
- Removal of unnecessary CNTs with CO₂ snow-jet

SED TV structure

Structure of SED. Each sub-pixel has a unique pair of electrodes that supplies an electron current.

R.**68** Fink, et al, Asia Display 2007

Color without filters?

⁶Courtesy of Jeff Sampsell, Quallcomm

Etalons

Fourtesy of Jeff Sampsell, Quallcomm

iMoD concept

Interferometric modulator operation

- Microsecond response
- Low voltage (<10V) operation
- Simple, PVD (or CVD) thin film structure

⁷²ourtesy of Jeff Sampsell, Quallcomm

iMoD technology advantage

- Modulator, color control and memory in one structure
- Simpler than TFT LCD
 - No transistors
 - No organic material
 - No color filters
 - No polarizers

A "flexible" revolution and nanotechnology impact

CRT

 \sim 100 years old

~ 25 years old

Future

Transformation

Contraction of Dr. Gregory Crawford, Brown University, Providence, RI

Flexible flat panel displays

- •What is the definition of a flexible flat panel display?
- What applications will FFPDs enable?
- •What are the issues for FFPDs?
- •Who believes we will have FFPDs in the next 3 years? 5 years?

Flexible flat panel displays

"Defining a flexible flat panel display is a bit like defining modern art" [Slikkerveer, *Information Display* **19** (2003)]

It is also a bit like religion – There are believers and non-believers

It is also a bit like politics-Everyone has a different opinion

Technology convergence

Flexible Substrates Flexible glass or plastic **Barrier Layers** Multi-layer films **Conducting Layers** Conducting polymer or ITO **Other Components** Polarizers, retarders **Electro-Optic Materials** LC, EP, Gyricon, OLED Active Matrix Organic, inorganic Manufacturing Roll-to-Roll, Sheet

77

Flexible display designs

- Flat, thin, lightweight, and robust displays (use plastic substrates for these features)
- Curved or conformed displays (permanently curved or bent)
- Flexible displays (continuous or casual flexing throughout life)
- Foldable displays
 (fold away when not in use)
- Rollable displays (roll away when not in use)
- Wearable displays (in clothing for example)
- Irregular shaped displays (circular and odd shapes for example)

Applications

Permanently Conformed Display

- Little/no degradation after process
- Issues arise during processing
- Delaminating over time

Rollable Display

- Continuous rolling/unrolling
- Issues can arise over time
- Fatigue

Courtesy of Dr. Gregory Crawford, **79** Brown University , Providence, RI

Essential technologies

- Substrates (plastic and glass)
- Barrier layers (keep out oxygen and water)
- Conductors (organic and inorganic)
- Active matrix (organic, inorganic, liftoff methods, a lot of activity)
- Materials (LCD, OLED, electrophoretics, gyricon, fabric)
- Manufacturing (Roll-to-roll or sheet-wise)

Flexible glass

Make glass behave like plastic (Schott, NSG) – coat with polymers Thin glass can go down to 30 mm in thickness

Polymer foils Thin glass			Polymer coated ultra thin glass
Water permeation	X	\checkmark	\checkmark
Oxygen permeation	Х	\checkmark	\checkmark
Thermal stability	Х	\checkmark	\checkmark
Chemical resistance	Х	\checkmark	\checkmark
Mechanical Stability	\checkmark	X	\checkmark
Flexibility	\checkmark	X	\checkmark
Standard manufacturing	X	\checkmark	\checkmark

Presented at USDC Flexible Conference (2003), Norbert Hildebrand

Courtesy of Dr. Gregory Crawford, Prown University, Providence, RI

Conductor technology

Flexible flat panel displays

- Organic Light Emitting Diodes (OLED)
- Emissive Technology
- Gyricon
- Electrophoretic
- Cholesteric Liquid Crystal
- Liquid Crystal Paintable Displays
- Polymer Dispersed Liquid Crystals

See Chapters in *Flexible Flat Panel Displays* by Sheridon, Amundson, Doane, Broer, Crawford, and Hildner. Howard, *Scientific American*, **290**, 64-69 (2004). Penterman, et al., SID Digest XXXIII, 1020-1023 (2002). Gorkhali, et al., *SID Digest* **XXXIII**, 1004-1007 (2002). Slikkerveer, et al., *SID Digest of Technical Papers* **XXXIII**, 27-29 (2002). Crawford, *IEEE Spectrum*, October, 40-46 (2000). West, et al., *IDW Proc. 99*, 235-238 (1999). Sheridan, *J. SID* **7**, 141-144 (1999). Drzaic, et al., *SID Digest* **XXIX**, 1131-1134 (1999). *Liquid Crystals in Complex Geometries* (Taylor & Francis, 1996), editor Crawford

83

Organic light emitting diodes

Vapor Deposited Molecule OLED

See Howard, Scientific American, 290, 64-69 (2004).

*8*4

Gyricon technology

Electrophoretic technology

Reflective E-Ink electrophoretic smart card

Courtesy of Dr. H. Jacht, Philips

Cholesteric technology

Reflective cholesteric electronic book

Presented at Symposium (Shiyanovskaya, et al.)

Coated cholesteric LC displays by Kent Displays Courtesy of Dr. A. Khan, Kent Displays, 2005

Applied Nanotech, Inc.

TFTs on plastic

Raise Process Temperature of plastic e.g. PCO, PAR, PI (inorganic TFTs)

Lower Processing Temperatures (stamping/printing) (organic TFTs)

C89 rtesy of Dr. Gregory Crawford, Brown University, Providence, RI

Printing TFTs

Courtesy of Raj Apte (*PARC*): Street, USDC 2005

Courtesy of Dr. Gregory Crawford, Prown University, Providence, RI

LTPS TFT LCD

Adapted from *Flexible Flat Panel Displays*, Chapter 23, Asano et al (John Wiley & Sons, Ltd., 2005, Chichester), G. P. Crawford, Editor

Sony

Durtesy of Dr. Gregory Crawford, Brown University, Providence, RI Market opportunity

Can flexible (plastic) displays replace glass displays in conventional display applications?

Not right now???

Performance driven market: At time of market entry, flex display would have to compete with full color, active matrix, high resolution, power consumption, etc.

Cost Driven Market: At time of market entry, flex displays would have to be less expensive than small, low quality but functional displays (e.g. STN displays can be really cheap). Today's optimistic estimates put flex displays at 2 times higher cost

Liquid crystalline phases of genetically engineered viruses

- Using phagocyte bacteria
- Bacteria with specific recognition moiety for crystalline surfaces
- Self-ordering process through biomultiplication
- Lyotropic phases were obtained

Angela M. Belcher, et al, Science, Vol. 296, May 3, 2002.

Liquid crystal order self-assembly

Schematic diagram of the process used to generate nanocrystal alignment by the phage display method.

Angela Belcher group, The University of Texas and MIT

95

Characterization of the liquid crystalline suspension of A7-phage –ZnS nanocrystals (A7-ZnS) and cast film

(C) The characteristic fingerprint texture of the cholesteric phase of an A7-ZnS suspension (76 mg/ml).

DNA electronics

The molecules in our bodies in order to perform their functions must:

- Self-assemble
- Recognize
- Bind in specific ways
- Form complex polymers

How can we learn and apply the same techniques?

Nanolithography today!

(i) RecA Polymerization SSDNA RecA (ii) Homologous recombination $= \rightarrow = 00000$ dsDNA (iii) Localization of a SWNT using antibodies biotin antimous RecA streptavidin-SWNT (iv) RecA protects against silver reduction Ag - $AgNO_1 \rightarrow$ (v) Gold metallization SWNT + KAuCl₄+ KSCN+HO

DNA-templated carbon nanotube FET

K. Keren, R. Berman, E. Buchstab, U. Sivan, E. Braun, Science, Vol. 302, November 21, 2003, 1380.

98

Display industry & nanotechnology are multidimensional

- Constantly revising (processes, products,...)
- Constantly enhancing (process, products,...)
- Constantly interacting (society, culture,...)
- Constantly inventing (processes, products,...)
- Constantly influencing (economy, society,...)
- Constantly changing (regions, fields,...)
- Constantly vastly interdisciplinary

